5G New Radio (NR) : Physical Layer Overview and Performance
IEEE Communication Theory Workshop - 2018

Amitabha Ghosh
Nokia Fellow and Head, Radio Interface Group
Nokia Bell Labs
May 15th, 2018
5G New Radio : Key Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage of sub 6GHz and mmWave spectrum</td>
<td>10x..100x more capacity</td>
<td>Advanced Channel Coding</td>
<td>Large data block support with low complexity</td>
</tr>
<tr>
<td>UE agnostic Massive MIMO and beamforming</td>
<td>Higher Capacity and Coverage</td>
<td>Aggregation of LTE + 5G carriers</td>
<td>Higher data rate with smooth migration</td>
</tr>
<tr>
<td>Lean carrier design</td>
<td>Low power consumption, less interference</td>
<td>Integrated Access and Backhaul</td>
<td>Greater coverage @ mmWave with lower cost</td>
</tr>
<tr>
<td>Flexible frame structure</td>
<td>Low latency, high efficiency</td>
<td>Flexible connectivity, mobility and sessions</td>
<td>Optimized end-to-end for any services</td>
</tr>
<tr>
<td>Scalable OFDM based air-interface</td>
<td>Address diverse spectrum and services</td>
<td>Beamformed Control and Access Channels</td>
<td>Greater Coverage</td>
</tr>
<tr>
<td>Scalable numerology</td>
<td>Support of multiple bandwidths and spectrum</td>
<td>Higher Spectral Usage</td>
<td>Enhanced Efficiency</td>
</tr>
</tbody>
</table>
Potential 5G Bands in (Early) 5G Deployments

<table>
<thead>
<tr>
<th>Band</th>
<th>Region</th>
<th>Infrastructure Type</th>
<th>5G Options</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 MHz</td>
<td>North America</td>
<td>LTE/5G</td>
<td></td>
<td>Full coverage with <1 GHz</td>
</tr>
<tr>
<td>700 MHz</td>
<td>APAC, EMEA, LatAm</td>
<td>LTE/5G</td>
<td></td>
<td>Dense urban high data rates at 3.5 – 4.5 GHz</td>
</tr>
<tr>
<td>3.3-3.4 GHz</td>
<td>APAC, Africa, LatAm</td>
<td>LTE/5G</td>
<td></td>
<td>Hotspot 10 Gbps at 28/39 GHz</td>
</tr>
<tr>
<td>3.4-3.6 GHz</td>
<td>Global</td>
<td>LTE/5G</td>
<td></td>
<td>Future mmwave options</td>
</tr>
<tr>
<td>3.55-4.2 GHz</td>
<td>US</td>
<td>LTE/5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6-3.8 GHz</td>
<td>Europe</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 GHz</td>
<td>Japan, China</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 GHz</td>
<td>US, Korea, Japan</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 GHz</td>
<td>US</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.25-27.5 GHz</td>
<td>WRC-19 band</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.8-33.4 GHz</td>
<td>WRC-19 band (Fra, UK)</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~40, ~50, ~70</td>
<td>WRC-19 bands</td>
<td>5G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most of the 3.5Ghz already awarded – Spectrum re arrangement to happen to support larger block.
5G Coverage Footprint – Combination of Low and High Bands

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Bandwidth</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5G mm-waves</td>
<td>1000x local capacity</td>
<td>20 Gbps / 1000 MHz</td>
</tr>
<tr>
<td>5G 3500 mMIMO</td>
<td>10x capacity with LTE grid with massive MIMO</td>
<td>2 Gbps / 100 MHz</td>
</tr>
<tr>
<td>LTE-AWS</td>
<td>IoT and critical communication with full coverage</td>
<td>200 Mbps / 10 MHz</td>
</tr>
<tr>
<td>LTE700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5G600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let’s make 3.7-4.2 GHz available

- High bands for capacity
- Low band for IoT and low latency critical communication
5G Enhances Spectral Utilization

- Wideband 5G carrier is more efficient than multicarrier LTE
- Faster load balancing
- Less common channel overhead
- No unnecessary guard bands between carriers. LTE uses 10% for guard bands.
5G Lean Carrier for Enhanced Efficiency

LTE

- Cell specific reference signal transmission 4x every millisecond
- Synchronization every 5 ms
- Broadcast every 10 ms

Very limited capability for base station power savings due to continuous transmission of cell reference signals

5G

- No cell specific reference signals
- Synchronization every 20 ms
- Broadcast every 20 ms

5G enables advanced base station power savings
Physical Channels & Physical Signals

PDSCH
DL shared channel

PBCH
Broadcast channel

PDCCH
DL control channel

DL Physical Signals
Demodulation Ref (DMRS)
Phase-tracking Ref (PT-RS)
Ch State Inf Ref (CSI-RS)
Primary Sync (PSS)
Secondary Sync (SSS)

UL Physical Signals
Demodulation Ref (DMRS)
Phase-tracking Ref (PT-RS)
Sounding Ref (SRS)

User Equipment

GNodeB

PUSCH
UL shared channel

PUCCH
UL control channel

PRACH
Random access channel
NR supports scalable numerology to address different spectrum, bandwidth, deployment and services

- Sub-carrier spacing (SCS) of 15, 30, 60, 120 kHz is supported for data channels
- 2^n scaling of SCS allows for efficient FFT processing
Flexible NR Framework

- NR provides flexible framework to support different services and QoS requirements
 - Scalable slot duration, mini-slot and slot aggregation
 - Self-contained slot structure
 - Traffic preemption for URLLC
 - Support for different numerologies for different services
- NR transmission is well-contained in time and frequency
 - Future feature can be easily accommodated
Scalable NR Slot Duration

- One slot is comprised of 14 symbols
 - Slot length depends on SCS – 1ms for 15 kHz SCS to 0.125ms for 120 kHz SCS
- Mini-slot (2, 4, or 7 symbols) can be allocated for shorter transmissions
- Slots can also be aggregated for longer transmissions
NR frame/subframe structure

- **DL only subframe**
- **UL only subframe**
- **Self-contained subframe**

- **0.125ms frame with cascaded UL/DL control signals (120 KHz SC)**
- **1.0 ms user plane latency**
- **GP = 0**

- **Same physical layer in UL and DL**
- **Scalable Slot Duration**
- **Flexible UL/DL**

- **Control channel just before data**
- **Energy-effective processing**

© Nokia 2017
Initial Access

gNB periodically transmits synchronization signals and broadcast channels

SS Block #1

SS Block #N

PSS/SSS
PBCH
RMSI + OSI
RACH preamble (Msg1)
RAR (Msg2)
Msg3
Msg4
SS Block / CSI-RS
DCI
PUSCH/PUCCH
UE finds a good beam during synchronization, decodes MIB/SIB on that beam
UE attempts random access on the configured RACH resource
UE transmits Msg3 (e.g. RRC connection request)
UE responds with beam/CSI report
UE switches beam

gNB responds with RAR message

gNB requests beam/CSI reporting

gNB switches beam
SS Burst Example
Overview of NR eMBB coding schemes

LDPC
- **Data channel**
 - BG1 and BG2
 - Quasi-cyclic (QC)
 - Covers a wide range of coding rates and block sizes
 - Full IR-HARQ support
- **Benefits**
 - High throughput (parallel decoding in hardware)
 - Good performance

Polar codes
- **Control channel**
 - DL: CRC-distributed polar codes
 - UL: CRC-aided and PC polar codes
- **Benefits**
 - Best performed short codes
 - Low algorithmic complexity
 - No error floor
What is “Massive MIMO”

Massive MIMO is the extension of traditional MIMO technology to antenna arrays having a large number (>>8) of controllable antennas.

Transmission signals from the antennas are adaptable by the physical layer via gain or phase control.

Not limited to a particular implementation or TX/RX strategy.

Enhance Coverage:
High Gain Adaptive Beamforming ➔ Path Loss Limited (>6GHz)

Enhance Capacity:
High Order Spatial Multiplexing ➔ Interference-limited (<6GHz)
MIMO in 3GPP

<table>
<thead>
<tr>
<th>Release 8</th>
<th>Release 9</th>
<th>Release 10</th>
<th>Release 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 4x4MIMO</td>
<td>• 8TX TM8</td>
<td>• 8TX TM9</td>
<td>• Downlink CoMP (TM10)</td>
</tr>
<tr>
<td>• 4x2MIMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8RX uplink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Uplink CRAN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release 12</th>
<th>Release 13</th>
<th>Release 14</th>
<th>Release 15+</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Downlink eCoMP</td>
<td>• Massive MIMO 16TX</td>
<td>• Massive MIMO 32TX</td>
<td>• 5G / NR Massive MIMO 32TX+</td>
</tr>
<tr>
<td>• New 4TX codebook</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Nokia 2017
Massive MIMO: Why Now?

<table>
<thead>
<tr>
<th>Capacity Requirements</th>
<th>Coverage Requirements</th>
<th>Technology Capability</th>
<th>3GPP Spec Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Macro Networks will become congested</td>
<td>Below 6GHz: desire to deploy LTE/NR on site grids sized for lower carrier frequencies</td>
<td>Active Antennas are becoming technically and commercially feasible</td>
<td>3GPP supports Massive MIMO in Rel-13/14 for LTE and Rel-15 for NR/5G</td>
</tr>
<tr>
<td>Spectrum < 3GHz and base sites will run out of capacity by 2020</td>
<td>Above 6GHz: Large Bandwidths but poor path loss conditions</td>
<td>Massive MIMO requires Active Antenna technology</td>
<td>3GPPP-New-Radio will be a “beam-based” air interface</td>
</tr>
</tbody>
</table>
Massive MIMO at Higher Carrier Frequencies (>>6 GHz)

<table>
<thead>
<tr>
<th>Poor path loss conditions</th>
<th>Cost & power consumption</th>
<th>Antenna array implementation</th>
<th>Beam based air interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large number of antennas needed to overcome poor path loss</td>
<td>Full digital solutions require transceiver units behind all elements</td>
<td>Smaller form factors</td>
<td>Single sector-wide beam may not provide adequate coverage</td>
</tr>
<tr>
<td>Obtaining channel knowledge per element is difficult</td>
<td>Wide bandwidths: A/D and D/A converters are very power hungry</td>
<td>Distributed PA solutions</td>
<td>→ Beamform all channels!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Hybrid arrays Beamforming at RF with baseband digital Precoding</td>
<td>→ Support analog and hybrid arrays</td>
</tr>
</tbody>
</table>

Massive MIMO at Higher Carrier Frequencies (>>6 GHz)
NR-MIMO in the 3GPP New Radio

Main Drivers of NR-MIMO Development

<table>
<thead>
<tr>
<th>Deployment</th>
<th>Scalable, Flexible Implementation</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| • Support frequencies both below and above 6GHz
• Support both FDD and TDD | gNB:
 • support full digital array architectures (<6GHz)
 • hybrid/analog architectures (>6GHz),
 • arbitrary TXRU configurations
 • arbitrary array sizes
UE:
 • support traditional UE antenna configurations
 • higher numbers of antennas
 • UEs operating above 6GHz (hybrid/analog architectures) | • Enhance capacity (interference-limited deployments)
• Enhance coverage (coverage-challenged deployments) |
Massive MIMO in 3GPP New Radio – Beam-based air-interface

Beamformed Control Channels
- Lower carrier frequencies (digital arch) - Single-beam
- Higher carrier frequencies (hybrid/analog beamforming architecture) - Multi-beam

Beam Scanning

Beam Management

Key features for beam-based AI
- Scalable and Flexible CSI Acquisition Framework
- High performing CSI Acquisition Codebooks
- Improved UL framework
Downlink MIMO Framework: Beam Management

- Initial gNB Beam Acquisition
- SSB or CSI-RS

- gNB Beam Refinement
- E.g., CSI-RS

- UE Beam Refinement

Forming beam ports for MIMO transmission (TX and RX)
DL-MIMO Operation – Sub-6GHz

Single CSI-RS
- CSI-RS may or may not be beamformed
- Leverage codebook feedback
- Analogous to **LTE Class A**
- Process:
 - gNB transmit CSI-RS
 - UE computes RI/PMI/CQI
- Maximum of 32 ports in the CSI-RS (codebooks are defined for up to 32 ports)
- Typically intended for arrays having 32 TXRUs or less with no beam selection (no CRI)

Multiple CSI-RS
- Combines beam selection with codebook feedback (multiple beamformed CSI-RS with **CRI** feedback)
- Analogous to **LTE Class B**
- Process:
 - gNB transmits one or more CSI-RS, each in different “directions”
 - UE computes CRI/PMI/CQI
- Supports arrays having arbitrary number of TXRUs
- Max 32 ports per CSI-RS

SRS-Based
- Intended for exploiting TDD reciprocity
- Similar to SRS-based operation in LTE
- Supports arrays having an arbitrary number of TXRUs.
- Process:
 - UE transmits SRS
 - Base computes TX weights

Disclaimer: NR-MIMO is flexible enough to support many variations on what is described on this slide
DL-MIMO Operation – Above 6GHz

Single Panel Array
- Combination of RF Beamforming and digital precoding at baseband
- RF Beamforming is typically 1RF BF weight vector per polarization: a single “Cross-Pol Beam”
- 2 TXRUs, Single User MIMO only
- Baseband Precoding Options:
 - None (rank 2 all the time)
 - CSI-RS based (RI/PMI/CQI)
 - SRS-based (RI/CQI)

Multi-Panel Array
- Combination of RF beamforming and digital precoding at baseband
- RF Beamforming is typically 1RF BF weight vector per polarization per panel:
 - One “Cross-Pol Beam” per sub-panel
- Number of TXRUs = 2 x # of panels
- Baseband Precoding Options:
 - CSI-RS based (RI/PMI/CQI)
 - SRS-based (RI/CQI)
- SU- and MU-MIMO (typically one UE per Cross-Pol Beam)

SU-MIMO
- 2 TXRUs at gNB
- 1 UE at a time
- 1 ≤ Rank ≤ 2

SU-MIMO
- 8 TXRUs at gNB
- 1 UE at a time
- 8 Ports/UE in this example
- 1 ≤ Rank ≤ 8 (UE limit)

MU-MIMO
- 8 TXRUs at gNB
- Up to 4 UE(s) at a time
- 1 ≤ Rank ≤ 2 per UE
Report Settings

- **Quantities to report:** CSI-related or L1-RSRP-related
- **Time-domain behavior:** Aperiodic, semi-persistent, periodic
- **Frequency-domain granularity:** Reporting band, wideband, sub-band
- **Time-domain restrictions** for channel and interference measurements
- **Codebook configuration** parameters
 - Type I
 - Type II

Resource Settings

- A Resource Setting configures $S>1$ **CSI Resource Sets**
- Each CSI Resource Set consists of:
 - **CSI-RS Resources** (Either NZP CSI-RS or CSI-IM)
 - **SS/PBCH Block Resources** (used for L1-RSRP computation)
- **Time-domain behavior:** aperiodic, periodic, semi-persistent
- **Note:** # of CSI-RS Resource Sets is limited to $S=1$ if CSI Resource Setting is periodic or semi-persistent.

Trigger States

- Associates
- What CSI to report and when to report it with
- What signals to use to compute the CSI

- Links Report Settings with Resource Settings
- Contains list of associated CSI-ReportConfig

© Nokia 2017
Summary: UL MIMO

- **Two transmit schemes are supported for NR uplink MIMO**
 - Codebook based transmission
 - Up to 4Tx codebooks are defined for both DFT-S-OFDM and CP-OFDM
 - Non-codebook based transmission
 - UE Tx/Rx reciprocity based scheme to enable UE assisted precoder selection

- **Diversity schemes are not explicitly supported in NR specification**
 - No diversity based transmission schemes are specified in Rel-15 NR
 - UE can still use “transparent” diversity transmission scheme.
 - UE may use 1Tx port procedure for specification-transparent diversity Tx schemes
Downlink Massive MIMO: NR vs LTE: 16 and 32 TXRUs, Full Buffer Traffic

LTE:
- Rel-13 Codebook
 - 16 Ports and 32 Ports, Maximum Rank = 8
 - (32 ports=Rel-13 extension CB approved in Rel-14)
- Rel-14 codebook
 - 16 Ports and 32 Ports, Maximum Rank = 2

NR:
- NR Codebook Type I
 - 16 Ports and 32 Ports, Maximum Rank = 8
- NR Codebook Type II
 - 16 Ports and 32 Ports, Maximum Rank = 2

Physical Array Structures

<table>
<thead>
<tr>
<th></th>
<th>8 columns</th>
<th>4 columns</th>
<th>2 columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,8,2)</td>
<td>(8,4,2)</td>
<td>(8,2,2)</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>64</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Logical Configurations

- **Scenarios at 2GHz**
 - 3D-UMa (750m & 1500m ISD) 3D-UMi (200m ISD)
 - 16 = (1,8,2)
 - 32 = (2,8,2)
 - 32 = (4,4,2)
 - (2,4,2)
 - 16 = (4,2,2)
 - 16 = (8,2,2)

© Nokia 2017
Gain of NR over LTE: 16 Ports – Full Buffer, 2GHz, DL

- Gain of NR over LTE is roughly 19-35% in Mean SE, 14%-30% in cell edge (Full Buffer)
- Gains in bursty traffic will be higher
5G vs. 4G Capacity per Cell at 2GHz – 16x4 MIMO

LTE
2GHz
750m ISD
16x4
eNB= (1,8,2)

NR
2GHz
750m ISD
16x4
gNB= (1,8,2)

• In Full Buffer, NR Codebooks show significant gains over LTE Codebooks
 - Mean UE throughput: 26%
 - Cell edge: 25%

* Includes 20% improvement due to lean carrier in NR
Uplink Performance: 32 Rx – Full Buffer, 2GHz

<table>
<thead>
<tr>
<th>ISD200m, 500m, 750m</th>
<th>ISD 200m</th>
<th>ISD 500m</th>
<th>ISD 750m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean UE SE (b/s/Hz)</td>
<td>0.35</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>Cell Edge UE SE (b/s/Hz)</td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- **Cell Edge Performance of UL degrades significantly as ISD is increased from 200m to 750m.**
- **No major differences in UL performance with NR vs LTE**
Detailed Simulation Parameters: 28GHz

Access Point Parameters:

- AP512: cross-pol array with 512 physical antenna elements (16,16,2), 256 elements per polarization
- Physical antenna elements: 5dBi max gain per physical element, Half wavelength spacing between rows and columns, elements have 3dB beamwidth of 90 degrees.
- Max EIRP = 54dBm and 60dBm (assuming polarizations are not coherently combined), Noise figure of 5dB
- Single TXRU per polarization → 2TXRUs: SU-MIMO with open-loop rank 2 per UE on DL and UL

UE:

- UE32: Dual panel cross-pol array, 2 panels oriented back-to-back with best-panel selection at UE. Each panel is (4,4,2) with 32 physical elements per panel, 16 physical elements per polarization per panel, TX power fed to active panel element = 23dBm
- Physical elements in antenna array panel: 5dBi max gain per physical element, half wavelength spacing between rows and columns, elements have 3dB beamwidth of 90 degrees.
- Max EIRP = 40dBm in all cases (assuming all antenna elements can be coherently combined), Noise figure of 9dB
- Single TXRU per polarization → 2 TXRUs: SU-MIMO with open-loop rank 2 per UE on DL and UL
Downlink (800MHz): Mean & Cell Edge Throughput (Non Ideal RX)

EIRP = 54dBm

Mean UE Throughput

![Graph of Mean UE Throughput for EIRP = 54dBm](image1)

Cell Edge Throughput

![Graph of Cell Edge Throughput for EIRP = 54dBm](image2)

EIRP = 60dBm

Mean UE Throughput

![Graph of Mean UE Throughput for EIRP = 60dBm](image3)

Cell Edge Throughput

![Graph of Cell Edge Throughput for EIRP = 60dBm](image4)
Antenna Array Comparisons - AP Antenna Aperture Constant vs. Frequency

5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale

- **28 GHz**
 - 256 elements (8x16x2)
 - Max EIRP ≈ 60.2 dBm
 - 103% area relative to 28GHz

- **39 GHz**
 - 512 elements (16x16x2)
 - Max EIRP ≈ 66.2 dBm
 - 15% area relative to 28GHz

- **73 GHz**
 - 1024 elements (16x32x2)
 - Max EIRP ≈ 72.2 dBm
 - 59% area relative to 28GHz

Room to grow…normalized array size is ~4.5dBm more than above

- **28 GHz, 32 elements, (4x4x2)**
 - Max EIRP ≈ 36.1 dBm

- **39 GHz, 32 elements, (4x4x2)**
 - Max EIRP ≈ 36.1 dBm

- **73 GHz, 32 elements, (4x4x2)**
 - Max EIRP ≈ 36.1 dBm
System Simulation Results for the Suburban Micro Environment (Heavy Foliage)
Constant Antenna Aperture for 28 GHz, 39 GHz and 73 GHz

Mean UE Throughput

Cell Edge Throughput

Downlink

Uplink

© Nokia 2017
5G – LTE Dual Connectivity and Application Performance

- 5G (=NR) gives lowest latency for the packets = best application performance
- 5G + LTE aggregation increases latency and degrades performance
- Conclusions: use 5G for user plane without LTE aggregation as long as 5G is available

Radio assumptions on average
- 5G: 400 Mbps and 3 ms
- LTE: 100 Mbps and 30 ms
3GPP Release 16 outlook – RAN1 led items

<table>
<thead>
<tr>
<th>On-going</th>
<th>High Priority</th>
<th>Medium Priority</th>
<th>Need unclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-orthogonal multiple access</td>
<td>MIMO enhancements</td>
<td>NR-based V2X below 6.4 GHz</td>
<td>Air-to-ground</td>
</tr>
<tr>
<td>Non-terrestrial networks</td>
<td>URLLC enhancements</td>
<td>MBMS for 5G / EN-DC</td>
<td>Flexible duplex</td>
</tr>
<tr>
<td>eV2X evaluation methodology</td>
<td>Dual Connectivity optimization</td>
<td>High speed UE</td>
<td>Full Duplex</td>
</tr>
<tr>
<td>Unlicensed spectrum</td>
<td>Location enhancements*</td>
<td>Spectrum Efficiency Enhancements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic TDD</td>
<td>5G Above 52.6 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR based IoT UE categories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initial access enhancements</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UE power saving & Wake-up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High priority applies for items with relevance for E911 accuracy requirements.
5G mmWave Integrated Access and Backhaul (IAB)

Problem Statement

New radio would likely require **dense deployments right from the initial phases** to get sufficient coverage @ mmWave frequencies.

Economically not feasible to provide fiber connectivity to each site until the new radio deployments become mature.

Self-backhauling is enabling multi-hop networks with shared access-backhaul resources.

Key disruption

Self-backhaul using same antenna arrays to dynamically switch between access and backhaul with optimized scheduling and dynamic TDD enabling deployment cost reduction and improving system performance.

Topics

- Topology management for single-hop/multi-hop and redundant connectivity
- Route selection and optimization
- Dynamic resource allocation between the backhaul and access links
- Physical layer solutions to support wireless backhaul links with high spectral efficiency

3GPP Study Item

In Progress complete by Dec 2018

Reduce deployment cost by 10x
Improve Coverage by 2x
3GPP Standardization on 5G vs available spectrum?

5G standards roadmap
- **3GPP 5G Phase 1 - Rel 15**
 - Mobile Broadband, Low latency & high reliability
- **3GPP 5G Phase 2 - Rel 16**
 - Massive IoT FMC
- **3GPP 5G Rel 17**
 - Optimized standard completing full 5G vision

5G industry roadmap
- **2016**: Pre-standards 5G start
- **2017**: First standard based 5G deployments
- **2018**: Standards-based 5G mass rollout
- **2019**: NSA (*)
- **2020**: SA (*)
- **2021**: Realistic Timing for introduction of commercial 5G 3.5Ghz, 28Ghz, 600Mhz
- **2022**: Realistic Timing for introduction of commercial massive machine communication use case

5G spectrum usage
- **US 28, 39 GHz**
- **Korea 28 GHz**
- **Japan 3.5 GHz**
- **EU/CN 4.5 GHz**
- **Korea 3.5 GHz**
- **EU 700Mhz 24GHz**
- **US 600MHz 2.5GHz**
- **Global availability > 24 GHz**